

IMPLEMENTATION OF GENETIC ALGORITHMS IN SELF-LEARNING MOBILE ROBOTS

Ionut Resceanu1, Ofelia Tindea2

1University of Craiova Romania, Faculty of Automation, Computers and Electronics,
 Department of Mechatronics,

2S.C. IT SIX Global Services, Craiova, Romania

Abstract: Applying learning algorithms such as machine learning and reinforcement
learning to real physical robots is an area of active research in embodied intelligence.
Autonomous, online learning robots possess the ability to operate in complex, dynamic
environments through training and instruction to improve the robots’ connection between
its perception and action. In this article, it is presented an implementation of an
autonomous, learning robot that performs exploration of the environment and learns how
to avoid obstacle effectively.

Keywords: mobile robot, genetic algorithms, learning, path-planning, control algorithms

1. INTRODUCTION

Autonomous navigation allows robots to plan their
path without the need for human intervention. The
pathplanning problem has been shown to be difficult,
thus this problem is often solved using heuristic
optimization methods such as genetic algorithms. An
important part of the genetic algorithm solution is the
structure of the genotype that represents paths in the
navigation environment. The genotype must
represent a valid path, but still be simple to process
by the genetic algorithm in order to reduce
computational requirements. Unfortunately, many
contemporary genetic path-planning algorithms use
complex structures that require a significant amount
of processing, which can affect the real-time
response of the robot.

2. OBJECTIVES

As the robot interacts with the environment certain
properties of this environment are sensed with the
robot’s sensors. What makes the robot learning
problem more diffcult than other non-robot machine
learning problems is the fact that there are a number
of additional unknowns the precise states of the robot

and the world are unknown and estimates have to be
used.

We need to determine the objectives of the learning
process. The most precise way to describe the
objectives of the robot is to determine sensor states
that are to be achieved and sensor states that are to be
avoided. This is a description of goals at the level of
robot hardware and may not be suitable to describe
all conceivable goals for instance some goals may
only be describable by multiple sensor states
including past sensor readings. However when it is
applicable it provides a precise and deterministic way
of encoding what the robot is supposed to achieve.
We measure the success of any learning strategy in
terms of these goals. This is important for the
detrmining how the performance of robots depends
on the task description. Success is measured in terms
of specified goals, not in terms of elegance of
solution or performance related criteria.

Our goal is to make the robot perform a specifed task
in its environment in as reliable and efcient a manner
as possible. Our means is to select the control
function f : S → A accordingly (S is the current
perceived state and A the action chosen).

There are at least two choices for selecting f. The
simplest way is to pre-program a fixed strategy that
maps perception to action a “hardwired” control
program. This works satisfactorily for many basic
robotics applications. However, as the complexity of
the task or of the environment increases the problem
of perceptual discrepancy also increases. This is the
problem that the human designer inevitably has a
very diferent perception of the world compared with
the robot’s view, a fact that makes him the less able
to determine a priori which of the sensor signals will
be relevant for a particular task and which won’t the
more complex a task becomes. Eventually this
discrepancy between human and robot perception can
only be resolved through experiments, i.e. trial and
error.

The robots should able to learn fundamental motor
skills such as obstacle avoidance by associating
perceptions with motor. To make a robot with two
whiskers avoid convex obstacles a simple hard wired
control function of move away from the side where a
whisker touches in many cases would sufice.

However because of their learning capability these
robots would be able to escape from dead ends even
though this situation had never been anticipated
during the controller design process (perceptual
discrepancy problem) , but they quickly learne to
keep turning in one direction whenever any whisker
touched.

Reinforcement learning is often a considerable
abstraction of the problem of goal-directed learning
from interaction. The use of a reward signal to
formalize the idea of a goal is one of the most
distinctive features of reinforcement learning.

A state signal that succeeds in retaining all relevant
information that summarizes past sensations
compactly while retaining all relevant information is
said to be Markov. In other words, the state
transitions have to be independent of the path of the
agent until this point and only depends on the current
state.

3. ROBOT LEARNING

The robot learning problem is to design a robot so
that it improves its performance through experience.
To be precise, we must specify what performance
and what experience are. Suppose the robot’s
performance is to be evaluated in terms of its ability
to achieve some set of goals G. More precisely,
suppose each goal is of the form X → Y : R where X
and Y are both conditions representing a set of
possible states and where R is some real valued
reward. The goal X → Y : R is interpreted as if the
robot finds itself in a state satisfying condition X then
the goal of reaching a state satisfying condition Y
becomes active, for which a reward R is received. For
example_ the goal of recharging the battery when it

is low can be represented in this way, by setting X to
the sensory input “battery level is low”, Y to the
sensory input robot senses that it is electrically
connected to the battery recharger and R to 100.
Given a set of such goals we can define a quantitative
measure of robot performance such as the proportion
of times that the robot successfully achieves
condition Y given that condition X has been
encountered, or the sum of the rewards it receives
over time. If we wish, we might further elaborate our
measure to include the cost or delay of the actions
leading from condition X to condition Y.

Given this definition of robot performance relative to
some set of goals G we can say that the robot
learning problem is to improve robot performance
through experience. Thus robot learning is also
relative to the particular goals and performance
measure. A robot learning algorithm that is
successful relative to one set of goals might be
unsuccessful with respect to another.

Of course we are most interested in general purpose
learning algorithms that enable the robot to become
increasingly successful with respect to a wide variety
of goal sets.

3.1 What and How to Learn

What and how should we design robots to learn. Two
important dimensions along which approaches vary
are the exact functions to be learned and the nature
of the training information available. Here we
consider a few possible learning approaches, then
summarise some of the more significant dimensions
of the space of possible approaches.

The most direct way to attack the robot learning
problem is to learn the control function f directly
from training examples corresponding to input-output
pairs of f. Recall that f is a function of the form f : S
→ A where S is the perceived state and A is the
chosen control action

In some cases, training examples of the function f
might not be directly available. Consider for example
a robot with no human trainer. with only the ability to
determine when the goals in its set G are satisfied
and what reward is associated with achieving that
goal. For example, in a navigation task in which an
initially invisible goal location is to be reached and in
which the robot cannot exploit any gradients present
in the environment for navigation, a sequence of
many actions is needed before the task is
accomplished. However if it has no external trainer to
suggest the correct action as each intermediate state,
its only training information will be the delayed
reward it eventually achieves when the goal is
satisfied. In this case it is not possible to learn the
function f directly because no input-output pairs of f
are available. An alternative approach that has been
used successfully in this case is to learn a diferent.

3.2 Available Training Information

As is clear from the above discussion, the type of
training information available has a strong impact on
the choice of learning method. The nature of the
training data available can be understood along two
orthogonal axes: supervised versus unsupervised
learning on the one hand and learning by immediate
feedback versus learning by delayed feedback on the
other hand.

In the general case of supervised learning, training
information about values of the target function are
presented to the learning mechanism. The
backpropagation algorithm for training artificial
neural networks is one common technique for
supervised learning.

The training information provided in supervised
control learning may be examples of the action to be
performed or more limited information in the form of
a scalar performance related reward, not indicating
the correct action itself. The latter is the case in
reinforcement learning as described above. Note that
in supervised learning, the supervisor providing the
training informationmay be either an external trainer
or a module within the robot itself, as in situations
where the robot assigns rewards to goal states. We
refer to the later as self-supervised learning because
one component of the robot is acting a a teacher for
another.

Unsupervised learning, on the other hand, performs a
clustering of incoming information without using
input-output pairs for training. While making robots
achieve specified goals, implying that supervised
learning will be the chosen method, unsupervised
learning also has a role to play. For example,
unsupervised learning can identify clusters of similar
data points, enabling the data to be reprepresented in
terms of more orthogonal features. This reduces the
efective dimensionality of the data, enabling more
concise data representation and supporting more
accurate supervised learning.

Learning by immediate reward has been applied to
robot control for a number of decades now. Using
electronic circuits whose characteristics were altered
through operant conditioning instrumental learning.

As we have seen, training feedback for control
learning may be delayed e.g. the reward is provided
only at the end of a long sequence of actions leading
to the goal or immediate, e.g. the reward or desired
action is provided at each step in the sequence
leading to the goal. In general, it is more dificult to
learn from delayed feedback because the system
faces the credit assignment problem, how much did
each action of the sequence of actions actually
contribute towards accomplishing the desired goal.

Some attempts have been made to make real robots
learn from delayed rewards, but the number of

training examples required is substantially more in
this case, leading some researchers to turn to
computer simulations.

3.3 Learning Mechanisms

One clear categorization of learning mechanisms in
robotics is based on when this signal is received,
immediately after an action is performed - immediate
reward or only after a sequence of actions has been
performed - delayed reward.

If immediate reward is available, learning in robots
can be achieved for example through operant
conditioning - instrumental learning. For example
changing charges in a capacitor, according to
learning rule using immediate feedback led to light-
seeking behaviour.

Learning from immediate reward is the most efective
way of learning. In some cases, however, immediate
reward is not available. If the task has been described
in such a way that reward is only obtained
occasionally i.e. upon reaching a goal state, the
learning process becomes very inefective.

Learning by trial and error from performance
feedback, i.e. from feedback that evaluates behaviour
but does not indicate correct behaviour is the most
accessible and most widely used method of robot
learning. This learning from scalar feedback, after
having executed a particular action is called
reinforcement learning.

3.4 Advanced robot learning

The robot learning curriculum identifed some higher
level competences in learning robots.

1.In addition to learning the robot control function
State – Action, we can have the robot learn a forward
prediction model State - Action – NextState. Because
this forward prediction model is task-independent
knowledge, it can be used to improve the ability of
the robot to learn strategies for new goals or tasks.
For example, if this learned forward prediction model
is perfectly correct and complete, it can be used to
compute the control policy for a new goal simply by
searching for a sequence of actions that leads to a
goal state ,i.e. traditional AI-style planning. More
realistically any learned forward prediction model is
likely to be only partly correct. Even in this case it
can be used to improve the accuracy of learning
control policies for new goals. One method for
accomplishing this is Explanation_based neural
network, in which approximate previously learned
forward prediction models have been shown to
signi_cantly improve the accuracy of Q learning.

2.Allow previously learned control behaviors to be
used as primitive actions for subsequent learning. For
example, we have a robot with primitive actions
Forward (d) and Turn(t), that learns a control strategy

for the goal exit the room by going into the hallway,
and a second control strategy for traverse the
hallway. Given a third goal such as navigate from
room A to room B, it would be much easier to solve
the goal by using these previously learned behaviors
as primitive actions. This kind of hierarchical
organization ofers one possible route to scaling up
robot learning to tasks of more realistic complexity.
The purpose of the light-seakingsystem was not
primarily to build a light-seeking robot but to
investigate learning from delayed rewards.

3.Temporal aspects as well as perceptual ones need
to be represented in the controller, for instance by
constructing rich internal states from the temporal
sequence of perceptions dynamic robot learning.
There is a similarity here to early research in
computer vision, it became eventually clear how
dificult it is to identify an object using a single frame,
whilst the task became much simpler through using
sequences of images Active vision is a further
advancement of this idea, the vision system now
being able to control the focus of attention as well.

4.Anticipation and prediction. Anticipation
surprise/novelty detection both in temporal sequences
and in single perceptions are needed to achieve the
necessary sensor acuity_ The more complex task,
robot and environment are, the higher will be the
demand on conputing resources. One way to tackle
this problem is to focus attention even before sensor
signals are obtained, i.e. select the signals that are to
be processed further_ rather than take all data and
analyze afterwards.(Peng,J. and Williams, R. J.,1996)

Fig.1. Learning from a Simulation Model.

4. APPLICATIONS OF GENETIC ALGORITHMS

IN ROBOT CONTROL

Genetic Algorithms (EA) is a class of algorithms that
is inspired by the Darwinian theories of evolution
and natural selection proposed by British naturalist
Charles Darwin in his publication On the Origin of
Species in 1859. There are many parameters that can
be adjusted to obtain different emergent behavior of
the population as a whole. Genetic algorithms
provide us with a new programming paradigm for
programming robot controller without deliberate

design and tedious parameter tuning on the part of
the programmer - the controller is simply evolved
over time.
Genetic algorithms belong to the class of stochastic
search methods (other stochastic search methods
include threshold acceptance, and some forms of
branch and bound). Whereas most stochastic search
methods operate on a single solution to the problem
at hand, genetic algorithms operate on a population
of solutions.

To use a genetic algorithm, you must encode
solutions to your problem in a structure that can be
stored in the computer. This object is a genome (or
chromosome). The genetic algorithm creates a
population of genomes then applies crossover and
mutation to the individuals in the population to
generate new individuals. It uses various selection
criteria so that it picks the best individuals for mating
(and subsequent crossover). The objective function
determines how 'good' each individual is.

But there are many ways to modify the basic
algorithm, and many parameters that can be
'tweaked'. Basically, if the objective function is
defined right, the representation right and the
operators right, then variations on the genetic
algorithm and its parameters will result in only minor
improvements.

There can be used any representation – Figure2 - for
the individual genomes in the genetic algorithm:
strings of bits, arrays, trees, lists, or any other object.
But there must be defined the genetic operators
(initialization, mutation, crossover, comparison) for
any representation that to be used.

Fig. 2. Representation.

Traditional goal-based robot design has been applied
successfully to many domains such as software
agents and Web crawlers. Deliberative architectures,
for example, are more widespread in software agent
technologies rather than physical robot control. The
main reason for this is that software agents
themselves exists in a symbolic world that is
deterministic, and that time is often not a constraint
for these agents. This implies that an accurate model
of the world can be provided to the robot agents to
formulate their plans and actions and that the agents
have the luxury of time to formulate these action
plans without having to worry about the time

Genotype space =
{0,1}L

Phenotype space

Encoding
(representation)

Decoding
(inverse representation)

0111010
0100010

100100

100100

required for reading sensors and controlling
actuators. (Smart, D. W., and Kaelbling, L., P, 2000)

However, assuming an accurate representation of the
real world is often unrealistic, especially in designing
physical robots. One reason for this is because of the
dynamism of the real world. For example, the
brightness of ambient light is hardly an indication of
the time of the day, depending on many factors such
as weather conditions, seasons etc. With an almost
infinite number of parameters to consider, it would
be impossible to accurately represent the real world
in a way that will allow robots to function
deterministically in the traditional goal-based
approach. Another reason is due to the fact that
sensors are unable to present a complete picture of
the environment - the sensors may be not accurate
and precise enough or the sensor channel may be
noisy.

The speed of reaction of the robot is also important
because it is not realistic to assume that there are not
costs associated with using sensors and actuators. In
a real robot, it takes time for the sensor to provide the
microprocessor with readings and for the
microcomputer to move the actuators. Therefore, we
cannot afford to have the robot controller perform
intensive computation before reacting to the stimuli
provided to the robot.

Although reaction time is important, we believe that
designing autonomous robots to do the “right thing”
is arduous if there is no notion of memory or learning
- something that reactive architectures are deficient
in. In view of these considerations, we have
implemented our robot control using the subsumption
architecture to provide the robot with acceptable
performance when reacting to its environment and
the flexibility to learn and evolve the robot controller
over time.

4.1 Obstacles in implementing Genetic Algorithms

There are two main obstacles in implementing
genetic algorithms in physical robots. Firstly, the
programmer needs to know how to define the fitness
function used to evaluate the individuals. This is
often a deliberate and complicated task. This task is
very similar to supervised learning methodologies
used in traditional machine learning and neural
networks. Secondly, genetic algorithms often require
a fairly large number of individuals and many
generations of simulation of this population. This
makes running genetic algorithms on robot
controllers a very time consuming tasks due to the
sheer size of number of simulations that needs to be
run on the robots. Currently, genetic algorithms are
often applied in simulations and the best evolved
controller is downloaded into real robots. However,
due to the differences between the ideal world in
simulation and the non-ideal world in reality, this
method does not provide us with a robust controller

that will allow the robot to react optimistically in real
world environments.(Brooks, A)

Nonetheless, genetic algorithms provide a way in
which complex behaviors can be derived from a
group of individual, autonomous robots. It also
allows the population as a whole learns the “tricks to
life” through evolution. Although it is not clear if
genetic algorithms are feasible in the implementation
of physical robots, it is still interesting to experiment
with these algorithms to derive interesting emergent
behavior (if any) from the robots.

4.2 Implementation of a learning robot using
Genetic Algorithms

In this section, we describe the implementation of a
genetic algorithm on a robot controller in an attempt
to evolve the obstacle avoidance behavior. We make
use of 8 state FSAs to represent the controller of the
robot. The actions Forward, Left, Right and Reverse
are encoded (in binary) as 00, 01, 10 and 11
respectively. The robot’s genotype (controller) is
obtained by first ordering the Old State, Input pairs
lexicographically. The robot’s genotype is obtained
by concatenating the corresponding Next State,
Action . The Input value is 1 if the robot’s proximity
sensor senses an obstacle, 0 otherwise.

Table 1: Parameters for Genetic Algorithm

Parameter Value
Population Size 5
Generations 10
Probability of Choosing Individual 50%
Steps/Iteration 100
Probability of Mutation 1%
Proportion of Population Mutated 40%
Crossover Points 1
Proportion of Population Crossover 40%

Table 1 shows the list of parameters used in the
genetic algorithm that we implemented on the robot
.The robot is simulated for 100 exploration time steps
for each controller i.e., the Explore AFSM is
executed 100 times. At each simulation, the robot is
initialized with an initial fitness of 100. If it hits an
obstacle, the robot’s fitness is decreased by 1. If the
robot moves forward, its fitness is increased by 1.
Otherwise, its fitness value remains the same. The
robot stops after each simulation and will start the
next simulation upon user input (via the RCX’s
PRGM button i.e., we overwrote the function of the
PRGM button).

5. EXPERIMENTAL RESULTS

In building the robot, we realize that fine tuning the
robot’s parameters such as threshold values takes a
lot of time and effort and gets increasingly difficult
when the robot’s controller becomes more complex.
We further experimented with genetic algorithms in

an attempt to evolve a robot controller to avoid
obstacles. This experiment was not complete but
serves as a baseline for using genetic algorithms on
our robot implementation.(Smart, D. W., and
Kaelbling, L., P, 2000)

We implemented a genetic algorithm on top of the
the simple version of the robot controller. The input
to the controller is a binary value that tells if there is
an obstacle in front of the robot. We overwrite the
RCX’s PRGM button such that the robot will stop
after each simulation and this button will have to be
pushed for the robot to start the next simulation (of
the next individual). The robot is initialized with a
fitness of 100 and this value is decreased when the
robot collides with an obstacle. The robot’s fitness is
incremented only when it moves forward; otherwise,
the robot could keep turning in circles and still
achieve optimal fitness.

6. CONCLUSION

Our experiments reinforced our knowledge that
building a physical robot that operates in the real
world environment is very different from simulation.
There are a variety of reasons for this phenomenon,
including both external and internal (to the robot).

External factors include:
Concurrent tasks: Most robot implementation have
some form of concurrent tasks to control the various
behaviors of the robots. Too many concurrent tasks
proved complex and difficult to get right.
Furthermore, since we have only a single processor
that implements a time-slicing scheme among the
different tasks and the robot is required to react
quickly at times, timing became a major issue i.e.,
insufficient time window to be shared among all the
different tasks.

Software abstraction: Software abstraction makes
programming a much easier task. The problem with
software abstraction is that it tends to abstract away
some important timing and synchronization issues in
programming the robot. We found that LegOS is a
very powerful environment, which allows you to
program in the standard ANSI C/C++ and utilize all
32 KB of RAM rather than limiting us to the number
of variables as defined by the microcontroller.

REFERENCES

Brooks, A. B. A Robust Layered Control System for

a Mobile Robot. IEEE Journal of Robotics and
Automation, Vol. 2, 1: 14-23, March 1986.

 Carbonell, J. G., Knoblock, C. A., and Milton, S.
PRODIGY: An Integrated Architecture for
Planning and Learing. Technical Report, CMU-
CS-89-189, October 1989.

Chuang-Hue Moh, Research Assignment 4, 6.836
Embodied Intelligence, Massachusetts Institute
of Technology, April 2002.

http://underdog.stanford.edu/tmr/.
LegOS. http://legos.sourceforge.net/.
LeJOS. http://lejos.sourceforge.net/.
Pedersen, M. H., Klitgaard, M. and Thomas, C.

Solving the Priority Inversion Problem in legOS.
University of Aalborg, UK, May 2000.

Newell, A., and Simon, H. A. Computer science as
empirical enquiry: Symbols and search.
Communications of the ACM, Vol. 19, 3: 113-
126, March 1976.

Not-Quite-C.http://www.enteract.com/ dbaum/nqc/.
Peng, J. and Williams, R. J. Technical Note:

Incremental Q-learning. Machine Learning,
22:283-290, 1996.

Smart, D. W., and Kaelbling, L., P. Making
Reinforcement Learning Work on Real-Robots.
Research Abstract, Artificial Intelligence
Laboratory, Massachusetts Institute of
Technology, 2000.

Smart, D. W., and Kaelbling, L., P. Practical
Reinforcement Learning in Continuous Spaces.
In Proceedings of the Sixteenth International
Conference on Machine Learning, 2000.

The Handy Board. ttp://www.handyboard.com.
The MIT Programmable Brick Project.

http://el.www.media.mit.edu/groups/el/-
 projects/programmable-brick/.

