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Abstract: Applying learning algorithms such as machine learning and reinforcement 
learning to real physical robots is an area of active research in embodied intelligence. 
Autonomous, online learning robots possess the ability to operate in complex, dynamic 
environments through training and instruction to improve the robots’ connection between 
its perception and action. In this article, it is presented an implementation of an 
autonomous, learning robot that performs exploration of the environment and learns how 
to avoid obstacle effectively. 
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1. INTRODUCTION 
 
Autonomous navigation allows robots to plan their 
path without the need for human intervention. The 
pathplanning problem has been shown to be difficult, 
thus this problem is often solved using heuristic 
optimization methods such as genetic algorithms. An 
important part of the genetic algorithm solution is the 
structure of the genotype that represents paths in the 
navigation environment. The genotype must 
represent a valid path, but still be simple to process 
by the genetic algorithm in order to reduce 
computational requirements. Unfortunately, many 
contemporary genetic path-planning algorithms use 
complex structures that require a significant amount 
of processing, which can affect the real-time 
response of the robot. 
 
 

2. OBJECTIVES 
 
As the robot interacts with the environment certain 
properties of this environment are sensed with the 
robot’s sensors. What makes the robot learning 
problem more diffcult than other non-robot machine 
learning problems is the fact that there are a number 
of additional unknowns the precise states of the robot 

and the world are unknown and estimates have to be 
used. 
 
We need to determine the objectives of the learning 
process. The most precise way to describe the 
objectives of the robot is to determine sensor states 
that are to be achieved and sensor states that are to be 
avoided. This is a description of goals at the level of 
robot hardware and may not be suitable to describe 
all conceivable goals for instance some goals may 
only be describable by multiple sensor states 
including past sensor readings. However when it is 
applicable it provides a precise and deterministic way 
of encoding what the robot is supposed to achieve. 
We measure the success of any learning strategy in 
terms of these goals. This is important for the 
detrmining how the performance of robots depends 
on the task description. Success is measured in terms 
of specified goals, not in terms of elegance of 
solution or performance related criteria. 
 
Our goal is to make the robot perform a specifed task 
in its environment in as reliable and efcient a manner 
as possible. Our means is to select the control 
function f : S → A accordingly (S is the current 
perceived state  and A the action chosen). 
 



  

There are at least two choices for selecting f. The 
simplest way is to pre-program a fixed strategy that 
maps perception to action a “hardwired” control 
program. This works satisfactorily for many basic 
robotics applications. However, as the complexity of 
the task or of the environment increases the problem 
of perceptual discrepancy also increases. This is the 
problem that the human designer inevitably has a 
very diferent perception of the world compared with 
the robot’s view, a fact that makes him the less able 
to determine a priori which of the sensor signals will 
be relevant for a particular task and which won’t the 
more complex a task becomes. Eventually this 
discrepancy between human and robot perception can 
only be resolved through experiments, i.e. trial and 
error. 
 
The robots should able to learn fundamental motor 
skills such as obstacle avoidance by associating 
perceptions with motor. To make a robot with two 
whiskers avoid convex obstacles a simple hard wired 
control function of move away from the side where a 
whisker touches in many cases would sufice.  
 
However because of their learning capability these 
robots would be able to escape from dead ends even 
though this situation had never been anticipated 
during the controller design process (perceptual 
discrepancy problem) , but they quickly learne to 
keep turning in one direction whenever any whisker 
touched. 
 
Reinforcement learning is often a considerable  
abstraction of the problem of goal-directed  learning 
from interaction. The use of a reward signal to 
formalize the idea of a goal is one of the most 
distinctive features of reinforcement learning. 
 
A state signal that succeeds in retaining all relevant 
information that summarizes past sensations 
compactly while retaining all relevant information is 
said to be Markov. In other words, the state 
transitions have to be independent of the path of the 
agent until this point and only depends on the current 
state. 
 

 
3. ROBOT LEARNING 

 
The robot learning problem is to design a robot so 
that it improves its performance through experience. 
To be precise, we must specify what performance 
and what experience are. Suppose the robot’s 
performance is to be evaluated in terms of its ability 
to achieve some set of goals G. More precisely, 
suppose each goal is of the form X → Y : R  where X 
and Y are both conditions representing a set of 
possible states and where R is some real valued 
reward. The goal X → Y : R  is interpreted as if the 
robot finds itself in a state satisfying condition X then 
the goal of reaching a state satisfying condition Y 
becomes active, for which a reward R is received. For 
example_ the goal of recharging the battery when it 

is low can be represented in this way, by setting X to 
the sensory input “battery level is low”, Y to the 
sensory input robot senses that it is electrically 
connected to the battery recharger and R to 100. 
Given a set of such goals we can define a quantitative 
measure of robot performance such as the proportion 
of times that the robot successfully achieves 
condition Y given that condition X has been 
encountered, or the sum of the rewards it receives 
over time. If we wish, we might further elaborate our 
measure to include the cost or delay of the actions 
leading from condition X to condition Y. 
 
Given this definition of robot performance relative to 
some set of goals G we can say that the robot 
learning problem is to improve robot performance 
through experience. Thus robot learning is also 
relative to the particular goals and performance 
measure. A robot learning algorithm that is 
successful relative to one set of goals might be 
unsuccessful with respect to another. 
 
Of course we are most interested in general purpose 
learning algorithms that enable the robot to become 
increasingly successful with respect to a wide variety 
of goal sets. 
 
 
3.1 What and How to Learn 
 
What and how should we design robots to learn. Two 
important dimensions along which approaches vary 
are the exact functions to be learned and  the nature 
of the training information available. Here we 
consider a few possible learning approaches, then 
summarise some of the more significant dimensions 
of the space of possible approaches. 
 
The most direct way to attack the robot learning 
problem is to learn the control function f directly 
from training examples corresponding to input-output 
pairs of f. Recall that f is a function of the form f : S 
→ A  where S is the perceived state and A is the 
chosen control action  
 
In some cases, training examples of the function f 
might not be directly available. Consider for example 
a robot with no human trainer. with only the ability to 
determine when the goals in its set G are satisfied 
and what reward is associated with achieving that 
goal. For example, in a navigation task in which an 
initially invisible goal location is to be reached and in 
which the robot cannot exploit any gradients present 
in the environment for navigation, a sequence of 
many actions is needed before the task is 
accomplished. However if it has no external trainer to 
suggest the correct action as each intermediate state, 
its only training information will be the delayed 
reward it eventually achieves when the goal is 
satisfied. In this case it is not possible to learn the 
function f directly because no input-output pairs of f 
are available. An alternative approach that has been 
used successfully in this case is to learn a diferent. 



  

3.2 Available Training Information 
 
As is clear from the above discussion, the type of 
training information available has a strong impact on 
the choice of learning method. The nature of the 
training data available can be understood along two 
orthogonal axes: supervised versus unsupervised 
learning on the one hand  and learning by immediate 
feedback versus learning by delayed feedback on the 
other hand. 
 
In the general case of supervised learning, training 
information about values of the target function are 
presented to the learning mechanism. The 
backpropagation algorithm for training artificial 
neural networks is one common technique for 
supervised learning. 
 
The training information provided in supervised 
control learning may be examples of the action to be 
performed or more limited information in the form of 
a scalar performance related reward, not indicating 
the correct action itself. The latter is the case in 
reinforcement learning as described above. Note that 
in supervised learning, the supervisor providing the 
training informationmay be either an external trainer 
or a module within the robot itself, as in situations 
where the robot assigns rewards to goal states. We 
refer to the later as self-supervised learning because 
one component of the robot is acting a a teacher for 
another. 
 
Unsupervised learning, on the other hand, performs a 
clustering of incoming information without using 
input-output pairs for training. While making robots 
achieve specified goals, implying that supervised 
learning will be the chosen method, unsupervised 
learning also has a role to play. For example, 
unsupervised learning can identify clusters of similar 
data points, enabling the data to be reprepresented in 
terms of more orthogonal features. This reduces the 
efective dimensionality of the data, enabling more 
concise data representation and supporting more 
accurate supervised learning. 
 
Learning by immediate reward has been applied to 
robot control for a number of decades now. Using 
electronic circuits whose characteristics were altered 
through operant conditioning  instrumental learning. 
 
As we have seen, training feedback for control 
learning may be delayed e.g. the reward is provided 
only at the end of a long sequence of actions leading 
to the goal or immediate, e.g. the reward or desired 
action is provided at each step in the sequence 
leading to the goal. In general, it is more dificult to 
learn from delayed feedback because the system 
faces the credit assignment problem, how much did 
each action of the sequence of actions actually 
contribute towards accomplishing the desired goal. 
 
Some attempts have been made to make real robots 
learn from delayed rewards, but the number of 

training examples required is substantially more in 
this case, leading some researchers to turn to 
computer simulations. 
 
3.3 Learning Mechanisms 
 
One clear categorization of learning mechanisms in 
robotics is based on when this signal is received, 
immediately after an action is performed - immediate 
reward or only after a sequence of actions has been 
performed - delayed reward. 
 
If immediate reward is available, learning in robots 
can be achieved for example through operant 
conditioning - instrumental learning. For example 
changing charges in a capacitor, according to 
learning rule using immediate feedback led to light-
seeking behaviour. 
 
Learning from immediate reward is the most efective 
way of learning. In some cases, however, immediate 
reward is not available. If the task has been described 
in such a way that reward is only obtained 
occasionally  i.e. upon reaching a goal state, the 
learning process becomes very inefective. 
 
Learning by trial and error from performance 
feedback, i.e. from feedback that evaluates behaviour 
but does not indicate correct behaviour is the most 
accessible and most widely used method of robot 
learning. This learning from scalar feedback, after 
having executed a particular action is called 
reinforcement learning. 
 
 
3.4 Advanced robot learning 
 
The robot learning curriculum identifed some higher 
level competences in learning robots. 
 
1.In addition to learning the robot control function 
State – Action, we can have the robot learn a forward 
prediction model State - Action – NextState. Because 
this forward prediction model is task-independent 
knowledge, it can be used to improve the ability of 
the robot to learn strategies for new goals or tasks. 
For example, if this learned forward prediction model 
is perfectly correct and complete, it can be used to 
compute the control policy for a new goal simply by 
searching for a sequence of actions that leads to a 
goal state ,i.e. traditional AI-style planning. More 
realistically any learned forward prediction model is 
likely to be only partly correct. Even in this case it 
can be used to improve the accuracy of learning 
control policies for new goals. One method for 
accomplishing this is Explanation_based neural 
network, in which approximate previously learned 
forward prediction models have been shown to 
signi_cantly improve the accuracy of Q learning.  
 
2.Allow previously learned control behaviors to be 
used as primitive actions for subsequent learning. For 
example, we have a robot with primitive actions 
Forward (d) and Turn(t), that learns a control strategy 



  

for the goal exit the room by going into the hallway, 
and a second control strategy for traverse the 
hallway. Given a third goal such as navigate from 
room A to room B, it would be much easier to solve 
the goal by using these previously learned behaviors 
as primitive actions. This kind of hierarchical 
organization ofers one possible route to scaling up 
robot learning to tasks of more realistic complexity. 
The purpose of the light-seakingsystem was not 
primarily to build a light-seeking robot but to 
investigate learning from delayed rewards. 
 
3.Temporal aspects as well as perceptual ones need 
to be represented in the controller, for instance by 
constructing rich internal states from the temporal 
sequence of perceptions dynamic robot learning. 
There is a similarity here to early research in 
computer vision, it became eventually clear how 
dificult it is to identify an object using a single frame, 
whilst the task became much simpler through using 
sequences of images Active vision  is a further 
advancement of this idea, the vision system now 
being able to control the focus of attention as well.  
 
4.Anticipation and prediction. Anticipation 
surprise/novelty detection both in temporal sequences 
and in single perceptions are needed to achieve the 
necessary sensor acuity_ The more complex task, 
robot and environment are, the higher will be the 
demand on conputing resources. One way to tackle 
this problem is to focus attention even before sensor 
signals are obtained, i.e. select the signals that are to 
be processed further_ rather than take all data and 
analyze afterwards.(Peng,J. and Williams, R. J.,1996) 
 

 
 
Fig.1. Learning from a Simulation Model. 
 
 
4. APPLICATIONS OF GENETIC ALGORITHMS  

IN ROBOT CONTROL 
 
Genetic Algorithms (EA) is a class of algorithms that 
is inspired by the Darwinian theories of evolution 
and natural selection proposed by British naturalist 
Charles Darwin in his publication On the Origin of 
Species in 1859. There are many parameters that can 
be adjusted to obtain different emergent behavior of 
the population as a whole. Genetic algorithms 
provide us with a new programming paradigm for 
programming robot controller without deliberate 

design and tedious parameter tuning on the part of 
the programmer - the controller is simply evolved 
over time. 
Genetic algorithms belong to the class of stochastic 
search methods (other stochastic search methods 
include threshold acceptance, and some forms of 
branch and bound). Whereas most stochastic search 
methods operate on a single solution to the problem 
at hand, genetic algorithms operate on a population 
of solutions.  
 
To use a genetic algorithm, you must encode 
solutions to your problem in a structure that can be 
stored in the computer. This object is a genome (or 
chromosome). The genetic algorithm creates a 
population of genomes then applies crossover and 
mutation to the individuals in the population to 
generate new individuals. It uses various selection 
criteria so that it picks the best individuals for mating 
(and subsequent crossover). The objective function 
determines how 'good' each individual is.  
 
But there are many ways to modify the basic 
algorithm, and many parameters that can be 
'tweaked'. Basically, if the objective function is 
defined right, the representation right and the 
operators right, then variations on the genetic 
algorithm and its parameters will result in only minor 
improvements.  
 
There can be used any representation – Figure2 - for 
the individual genomes in the genetic algorithm: 
strings of bits, arrays, trees, lists, or any other object. 
But there must be defined the genetic operators 
(initialization, mutation, crossover, comparison) for 
any representation that to be used. 
 

 
 
Fig. 2. Representation. 
 
Traditional goal-based robot design has been applied 
successfully to many domains such as software 
agents and Web crawlers. Deliberative architectures, 
for example, are more widespread in software agent 
technologies rather than physical robot control. The 
main reason for this is that software agents 
themselves exists in a symbolic world that is 
deterministic, and that time is often not a constraint 
for these agents. This implies that an accurate model 
of the world can be provided to the robot agents to 
formulate their plans and actions and that the agents 
have the luxury of time to formulate these action 
plans without having to worry about the time 
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required for reading sensors and controlling 
actuators. (Smart, D. W., and Kaelbling, L., P, 2000) 
 
However, assuming an accurate representation of the 
real world is often unrealistic, especially in designing 
physical robots. One reason for this is because of the 
dynamism of the real world. For example, the 
brightness of ambient light is hardly an indication of 
the time of the day, depending on many factors such 
as weather conditions, seasons etc. With an almost 
infinite number of parameters to consider, it would 
be impossible to accurately represent the real world 
in a way that will allow robots to function 
deterministically in the traditional goal-based 
approach. Another reason is due to the fact that 
sensors are unable to present a complete picture of 
the environment - the sensors may be not accurate 
and precise enough or the sensor channel may be 
noisy. 
 
The speed of reaction of the robot is also important 
because it is not realistic to assume that there are not 
costs associated with using sensors and actuators. In 
a real robot, it takes time for the sensor to provide the 
microprocessor with readings and for the 
microcomputer to move the actuators. Therefore, we 
cannot afford to have the robot controller perform 
intensive computation before reacting to the stimuli 
provided to the robot. 
 
Although reaction time is important, we believe that 
designing autonomous robots to do the “right thing” 
is arduous if there is no notion of memory or learning 
- something that reactive architectures are deficient 
in. In view of these considerations, we have 
implemented our robot control using the subsumption 
architecture to provide the robot with acceptable 
performance when reacting to its environment and 
the flexibility to learn and evolve the robot controller 
over time. 
  
 
4.1  Obstacles in implementing Genetic Algorithms 
 
There are two main obstacles in implementing 
genetic algorithms in physical robots. Firstly, the 
programmer needs to know how to define the fitness 
function used to evaluate the individuals. This is 
often a deliberate and complicated task. This task is 
very similar to supervised learning methodologies 
used in traditional machine learning and neural 
networks. Secondly, genetic algorithms often require 
a fairly large number of individuals and many 
generations of simulation of this population. This 
makes running genetic algorithms on robot 
controllers a very time consuming tasks due to the 
sheer size of number of simulations that needs to be 
run on the robots. Currently, genetic algorithms are 
often applied in simulations and the best evolved 
controller is downloaded into real robots. However, 
due to the differences between the ideal world in 
simulation and the non-ideal world in reality, this 
method does not provide us with a robust controller 

that will allow the robot to react optimistically in real 
world environments.( Brooks, A) 
 
Nonetheless, genetic algorithms provide a way in 
which complex behaviors can be derived from a 
group of individual, autonomous robots. It also 
allows the population as a whole learns the “tricks to 
life” through evolution. Although it is not clear if 
genetic algorithms are feasible in the implementation 
of physical robots, it is still interesting to experiment 
with these algorithms to derive interesting emergent 
behavior (if any) from the robots. 
 
 
4.2 Implementation of a learning robot  using 
Genetic Algorithms 
 
In this section, we describe the implementation of a  
genetic algorithm on a robot controller in an attempt 
to evolve the obstacle avoidance behavior. We make 
use of 8 state FSAs to represent the controller of the 
robot. The actions Forward, Left, Right and Reverse 
are encoded (in binary) as 00, 01, 10 and 11 
respectively. The robot’s genotype (controller) is 
obtained by first ordering the Old State, Input pairs 
lexicographically. The robot’s genotype is obtained 
by concatenating the corresponding Next State, 
Action . The Input value is 1 if the robot’s proximity 
sensor senses an obstacle, 0 otherwise. 
 

Table 1: Parameters for Genetic Algorithm 
 
Parameter                                           Value 
Population Size                                             5 
Generations                                             10 
Probability of Choosing Individual                 50% 
Steps/Iteration                                             100 
Probability of Mutation                               1% 
Proportion of Population Mutated                 40% 
Crossover Points                                 1 
Proportion of Population Crossover   40% 
 
Table 1 shows the list of parameters used in the 
genetic algorithm that we implemented on the robot 
.The robot is simulated for 100 exploration time steps 
for each controller i.e., the Explore AFSM is 
executed 100 times. At each simulation, the robot is 
initialized with an initial fitness of 100. If it hits an 
obstacle, the robot’s fitness is decreased by 1. If the 
robot moves forward, its fitness is increased by 1. 
Otherwise, its fitness value remains the same. The 
robot stops after each simulation and will start the 
next simulation upon user input (via the RCX’s 
PRGM button i.e., we overwrote the function of the 
PRGM button). 
 
 

5. EXPERIMENTAL RESULTS 
 
In building the robot, we realize that fine tuning the 
robot’s parameters such as threshold values takes a 
lot of time and effort and gets increasingly difficult 
when the robot’s controller becomes more complex. 
We further experimented with genetic algorithms in 



  

an attempt to evolve a robot controller to avoid 
obstacles. This experiment was not complete but 
serves as a baseline for using genetic algorithms on 
our robot implementation.(Smart, D. W., and 
Kaelbling, L., P, 2000) 
 
We implemented a genetic algorithm on top of the 
the simple version of the robot controller. The input 
to the controller is a binary value that tells if there is 
an obstacle in front of the robot. We overwrite the 
RCX’s PRGM button such that the robot will stop 
after each simulation and this button will have to be 
pushed for the robot to start the next simulation (of 
the next individual). The robot is initialized with a 
fitness of 100 and this value is decreased when the 
robot collides with an obstacle. The robot’s fitness is 
incremented only when it moves forward; otherwise, 
the robot could keep turning in circles and still 
achieve optimal fitness. 
 
 

6. CONCLUSION 
 
Our experiments reinforced our knowledge that 
building a physical robot that operates in the real 
world environment is very different from simulation. 
There are a variety of reasons for this phenomenon, 
including both external and internal (to the robot).  
 
External factors include: 
Concurrent tasks: Most robot implementation have 
some form of concurrent tasks to control the various 
behaviors of the robots. Too many concurrent tasks 
proved complex and difficult to get right. 
Furthermore, since we have only a single processor 
that implements a time-slicing scheme among the 
different tasks and the robot is required to react 
quickly at times, timing became a major issue i.e., 
insufficient time window to be shared among all the 
different tasks. 
 
Software abstraction: Software abstraction makes 
programming a much easier task. The problem with 
software abstraction is that it tends to abstract away 
some important timing and synchronization issues in 
programming the robot. We found that LegOS is a 
very powerful environment, which allows you to 
program in the standard ANSI C/C++ and utilize all 
32 KB of RAM rather than limiting us to the number 
of variables as defined by the microcontroller. 
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